Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0545120120220121714
Journal of Microbiology and Biotechnology
2012 Volume.22 No. 12 p.1714 ~ p.1723
Identification of the ¥â-Glucosidase Gene from Bifidobacterium animalis subsp. lactis and Its Expression in B. bifidum BGN4
Youn So-Youn

Park Myeong-Soo
Ji Geun-Eog
Abstract
¥â-Glucosidase is necessary for the bioconversion of glycosidic phytochemicals in food. Two Bifidobacterium strains (Bifidobacterium animalis subsp. lactis SH5 and B. animalis subsp. lactis RD68) with relatively high ¥â- glucosidase activities were selected among 46 lactic acid bacteria. A ¥â-glucosidase gene (bbg572) from B. lactis was shotgun cloned, fully sequenced, and analyzed for its transcription start site, structural gene, and deduced transcriptional terminator. The structural gene of bbg572 was 1,383 bp. Based on amino sequence similarities, bbg572 was assigned to family 1 of the glycosyl hydrolases. To overexpress bbg572 in Bifidobacterium, several bifidobacteria expression vectors were constructed by combining several promoters and a terminator sequence from different bifidobacteria. The maximum activity of recombinant Bbg572 was achieved when it was expressed under its own promoter and terminator. Its enzyme activity increased 31-fold compared with those of its parental strains. The optimal pH for Bbg572 was pH 6.0. Bbg572 was stable at 37-40oC. It hydrolyzed isoflavones, quercetins, and disaccharides with various ¥â-glucoside linkages. Bbg572 also converted the ginsenosides Rb1 and Rb2. These results suggest that this new ¥â-glucosidase-positive Bifidobacterium transformant can be utilized for the production of specific aglycone products.
KEYWORD
¥â-glucosidase, Bifidobacterium, promoter, terminator
FullTexts / Linksout information
Listed journal information
SCI(E) MEDLINE ÇмúÁøÈïÀç´Ü(KCI)